Hydrotherapy on exercise capacity, muscle strength and quality of life in patients with heart failure: A meta-analysis

Mansueto Gomes Neto, Cristiano Sena Conceição, Fabio Luciano Arcanjo de Jesus , Vitor Oliveira Carvalho

Heart failure (HF) is clinically characterized by exercise intolerance, poor health related quality of life (HRQOL) and high mortality. Exercise training is a well-established method to improve exercise intolerance and to restore HRQOL in patients with HF. However, the most efficient modality is unknown. In this context, hydrotherapy (i.e. exercise in warm water) has been proposed as an alternative tool in the rehabilitation of patients with HF. There is no meta-analysis of the efficacy of this intervention in HF patients. The aim of this systematic review with meta-analysis was to analyze the published randomized controlled trials (RCTs) that investigated the effects of hydrotherapy on exercise capacity and HRQOL in HF patients. This review was planned and conducted in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We searched for references on MEDLINE, EMBASE, CINAHL, PEDro, and the Cochrane Library up to May 2014 without language restrictions. This systematic review included all RCTs that studied the effects of hydrotherapy in aerobic capacity, muscle strength and/or HRQOL of the HF patients. Two authors independently evaluated and extracted data from the published reports. Methodological quality was also independently assessed by two researchers. Studies were scored on the PEDro scale a useful tool for assessing the quality of physical therapy trials based on a Delphi list that consisted of 11 items with a score range of 0 to 10.



Pooled-effect estimates were obtained by comparing the least square mean percentage change from baseline to study end for each group. Two comparisons were made: hydrotherapy versus control group (non exercise) and hydrotherapy versus aerobic exercise group. All analyses were conducted using Review Manager Version 5.0 (Cochrane Collaboration). Six papers met the eligibility criteria. Fig. 1 shows the PRISMA flow diagram of studies in this review. The results of the assessment of the PEDro scale are presented individually in Table 1. The final sample size for the selected studies ranged from 14 to 25 and mean age of participants ranged from 51 to 75 years. All studies analyzed in this review included outpatients with documented HF and New York Heart Association (NYHA) classes II–III. Table 2 summarizes the characteristics. Hydrotherapy was considered as aerobic and strength exercises in warm water and the duration of the programs ranged from 3 to 24 weeks. Regarding the time of the session, there was a variation from 30  to 90 minutes. The frequency of sessions was three times per week in three studies and five times per week in others. Four studies assessed peak VO2 as an outcome, two compared hydrotherapy versus no exercise [10,11] and two hydrotherapy versus conventional aerobic exercise in land. The meta-analyses showed a significant improvement in peak VO2 of 2.97 mL·kg−1 ·min−1 (95% CI: 1.99, 3.94, N = 42) for participants in the hydrotherapy group compared with the no exercise group (Fig. 2A). A non significant change in peak VO2 of −0.66 mL·kg−1 ·min−1 (95% CI: −2.05, 0.72, N = 48) was found for participants in the hydrotherapy group compared with conventional aerobic exercises (Fig. 2B). Three studies assessed the 6-minute walk test (6WMT) as an outcome [10,11,14], two compared hydrotherapy versus no exercise and one hydrotherapy versus aerobic exercises in land. Significant improvements were found when comparing hydrotherapy with no exercise controls. The meta-analyses showed (Fig. 3) a significant improvement in 6WMT of 43.8 m (95% CI: 7.36, 80.16, N = 42) for participants in the hydrotherapy group compared with the no exercise group. Three studies assessed muscle strength as an outcome, two compared hydrotherapy versus no exercise and one hydrotherapy versus aerobic exercise in land. Significant improvements were found when comparing hydrotherapy with no exercise controls. The meta-analyses showed (Fig. 4) a significant improvement in muscle strength of 23.7 Nm (95% CI: 4.49, 42.89, N = 42) for participants in the hydrotherapy group compared with the no exercise group. Two studies measured HRQOL. The meta-analyses showed non significant improvement in HRQOL of −4.5 (95% CI: −14.40, 5.49, N = 42) for participants in the hydrotherapy group compared with the no exercise group (Fig. 5). Meta-analysis demonstrated a significant difference in peak VO2, distance in the six-minute walking test, muscle strength and DBP between patients with HF submitted to hydrotherapy and controls. Moreover, hydrotherapy was as efficient as conventional aerobic exercise in land for peak VO2. It is now known that cardiac function actually improves during water immersion due to the increase in early diastolic filling and decrease in heart rate, resulting in improvements in stroke volume and ejection fraction. These data created a positive scenario to discuss hydrotherapy as a potential tool in cardiovascular rehabilitation. This systematic review with meta-analysis is important because it analyzes the hydrotherapy as a potential co-adjutant modality in the rehabilitation of patients with HF. The mean of peak VO2 in the analyzed studies was 17.05 at the beginning and 18.3 mL·kg−1 ·min−1 at the end of the intervention. It has been demonstrated that improvements above 10% after a cardiovascular rehabilitation program represent a good prognosis in patients with HF. It has also been demonstrated that a minimum VO2 peak of 15 mL·kg−1 ·min−1 in women and 18 mL·kg−1 ·min−1 in men aged 55–86 years seems to be necessary for full and independent living. Thus the improvement generated by the hydrotherapy program can contribute to those patients with CHF to have better conditions to carry out their everyday activities.




Quadriceps mass and strength are related to maximal exercise capacity in HF. Moreover, changes in muscle performance with exercise training have been demonstrated to be related to changes in physical function and quality of life. In the present systematic review, our meta-analysis demonstrated a significant difference in muscle strength between patients with HF submitted to hydrotherapy and sedentary controls. Despite the fact that hydrotherapy was shown to be efficient in improving peak VO2 and muscle strength, it is not possible to conclude about the benefits of hydrotherapy compared to no exercise in HRQOL. Considering the available data, our meta-analysis showed that hydrotherapy was efficient to improve exercise capacity in patients with HF. Well controlled RCTs are needed to understand the potential bene- fits of hydrotherapy in patients with HF.

Clique aqui e confira o artigo original.

Fisioterapia especializada

A Clínica AF Fisioterapia foi idealizada com o intuito de proporcionar um tratamento personalizado, respeitando a individualidade de cada paciente. Está sentindo dor no quadril ou joelho? Procure nossos especialistas qualificados e conheça o nosso protocolo de atendimento baseado em evidências:

1. Avaliação Clínica Detalhada: o corpo clínico formado por fisioterapeutas avaliam de forma global e funcional cada, colhendo todos os dados importantes para início do tratamento:

2. Avaliação Cinemática: caso seja necessário, o paciente pode ser encaminhado para avaliação com sistema 2D que permite analisar quaisquer alterações na força ou funcionalidade pode ser utilizado;

3. Protocolo Exclusivo de Atendimento: foco no alinhamento biomecânico possibilitando maior qualidade de vida.


The Stabilizing System of the Spine. Part I. Function, Dysfunction, Adaptation, and Enhancement

Panjabi MM1

Presented here is the conceptual basis for the assertion that the spinal stabilizing system consists of three subsystems. The vertebrae, discs, and ligaments constitute the passive subsystem. All muscles and tendons surrounding the spinal column that can apply forces to the spinal column constitute the active subsystem. The nerves and central nervous system comprise the neural subsystem, which determines the requirements for spinal stability by monitoring the various transducer signals, and directs the active subsystem to provide the needed stability. A dysfunction of a component of any one of the subsystems may lead to one or more of the following three possibilities: (a) an immediate response from other subsystems to successfully compensate, (b) a long-term adaptation response of one or more subsystems, and (c) an injury to one or more components of any subsystem. It is conceptualized that the first response results in normal function, the second results in normal function but with an altered spinal stabilizing system, and the third leads to overall system dysfunction, producing, for example, low back pain. In situations where additional loads or complex postures are anticipated, the neural control unit may alter the muscle recruitment strategy, with the temporary goal of enhancing the spine stability beyond the normal requirements.

Confira o artigo completo em PDF:

The Stabilizing System of the Spine. Part I. Function, Dysfunction, Adaptation, and Enhancement

Suspected Mechanisms in the Cause of Overuse Running Injuries: A Clinical Review

Reed Ferber, PhD, Alan Hreljac, PhD, and Karen D Kendall, MKin

Context: Various epidemiological studies have estimated that up to 70% of runners sustain an overuse running injury each year. Although few overuse running injuries have an established cause, more than 80% of running-related injuries occur at or below the knee, which suggests that some common mechanisms may be at work. The question then becomes, are there common mechanisms related to overuse running injuries?

Evidence Acquisition: Research studies were identified via the following electronic databases: MEDLINE, EMBASE PsycInfo, and CINAHL (1980–July 2008). Inclusion was based on evaluation of risk factors for overuse running injuries. Results: A majority of the risk factors that have been researched over the past few years can be generally categorized into 2 groups: atypical foot pronation mechanics and inadequate hip muscle stabilization.

Conclusion: Based on the review of literature, there is no definitive link between atypical foot mechanics and running injury mechanisms. The lack of normative data and a definition of typical foot structure has hampered progress. In contrast, a large and growing body of literature suggests that weakness of hip-stabilizing muscles leads to atypical lower extremity mechanics and increased forces within the lower extremity while running.

Although runners often sustain acute injuries such as ankle sprains and muscle strains, a majority of running injuries can be classified as cumulative micro-trauma injuries (ie, overuse injuries). Running is one of the most widespread activities during which overuse injuries of the lower extremity occur. Various epidemiological studies have estimated that anywhere from 27% to 70% of recreational and competitive distance runners sustain an overuse running injury during any 1-year period. The runners in these studies vary considerably in their running experience and training habits, but they generally run at least 20 to 30 km per week and have been running consistently for at least 1 to 3 years. The knee is the most common site of overuse running injuries, accounting for close to 50% of all injuries.  A recent systematic review and meta-analysis reported that the knee was the most common site of musculoskeletal injury for runners. According to a clinical study of more than 2000 injured runners, the most common knee condition is patellofemoral pain syndrome (PFPS), followed by iliotibial band syndrome (ITBS), meniscal injuries, and patellar tendinitis. Injuries to the foot, ankle, and lower leg—such as plantar fasciitis, Achilles tendinitis, and medial tibial stress syndrome (also known as shin splints)—account for almost 40% of the remaining injuries, whereas less than 20% of the running injuries occur superior to the knee. Although few overuse running injuries have an established cause more than 80% of these injuries occur at or below the knee, thus suggesting that some common mechanisms may be involved. The cause of these injuries is multifactorial and diverse and several identifiable factors may predict who is at risk.


For the purpose of this clinical review, research studies were identified via the following electronic databases: MEDLINE, EMBASE, PsycInfo, and CINAHL (1980–July 2008). Included studies were directly related to risk factors for overuse. The following keywords were used: running, injury, mechanics, and knee (resulting in 283 articles). Criteria for screening included  running injuries in long-distance runners,  a minimum of 20 km per week, (3) recreational or competitive runners but not elite, and epidemiology (prevalence, incidence) or etiology (determinants). Two reviewers categorized the studies to determine whether a majority identified common risk factors. As such, risk factors were generally categorized into 2 groups: atypical foot pronation mechanics and inadequate hip muscle stabilization.


Pronation is a combination of ankle dorsiflexion, rearfoot eversion, and forefoot abduction, and it occurs during the first half of the stance phase in running. Excessive rearfoot frontal plane motion (eversion) influences lower extremity mechanics via tibial rotation. During the first half of the stance phase, the calcaneus everts and the head of the talus internally rotates. The tibia internally rotates with the talus, owing to the tight articulation of the ankle joint mortise. In weightbearing activities such as running, there is a direct relationship between degree of pronation and internal tibial rotation (ie, for runners who exhibit a heel-toe footfall pattern). Pronation is a necessary and protective mechanism during running; it allows impact forces to be attenuated over a long period. Researchers have suggested that a higher level of pronation is favorable during running, if it falls within normal physiological limits and does not continue beyond midstance. After midstance, it is necessary for the foot to become more rigid and supinate in preparation of toe-off (ie, the tibia and talus externally rotate and the calcaneus inverts). As such, the rearfoot inverts and the tibia externally rotates. Severe overpronators, or runners who exhibit prolonged pronation, may be at an increased risk of injury because of the potentially large torques generated within the lower extremity and the subsequent increase in internal tibial rotation. Specifically, the tibialis posterior and soleus muscles function to minimize these torsional forces within the shank and ankle complex. If these forces are experienced within the knee or hip joints, then the hamstring and deep external rotator muscles must concomitantly contract to control the subsequent torsional forces, respectively. Excessive pronation, pronation velocity, and time to maximum pronation have often been implicated as contributing factors to overuse running injuries. In many studies, a static evaluation of pronation was conducted on injured runners, with the results suggesting that injured runners were more often overpronators when compared to uninjured runners. However, minimal and conflicting experimental evidence supports excessive foot pronation as a contributing factor in the cause of injuries. The majority of these studies were cross-sectional. One study partially supported the speculation regarding a cause-and-effect relationship between foot pronation and injury; it reported that groups of injured runners, when compared to a control group comprising uninjured runners, exhibited greater maximum pronation angles and had greater maximum pronation velocities. The results were evident in a group who had medial tibial stress syndrome. Viitasalo and Kvist reported similar results when comparing runners with medial tibial stress syndrome to an uninjured control group during barefoot running. However, contradictory results were found in a study in which runners who had never sustained an overuse injury exhibited greater pronation velocity and greater touchdown supination angle when compared to runners who had sustained an overuse injury. Messier et al compared runners with PFPS to an uninjured control group and found no differences in any rearfoot variables. Thus, the relationship between rearfoot position and running injury susceptibility is not clear given these retrospective cross-sectional design studies. Unfortunately, only 2 prospective studies have been conducted to investigate the link between foot mechanics and overuse injuries. Willems et al evaluated lower leg pain in a group of 400 physically active young individuals. Plantar pressure measurements and 3-dimensional rearfoot kinematic data were collected, and participants were followed for 1 academic year. Seventy-five injured runners were identified, and their data were compared to those of 167 noninjured runners. The injured runners exhibited significantly prolonged rearfoot pronation, increased medial foot pressure, and accelerated reinversion when compared to controls, thus suggesting that atypical foot pronation is a contributing factor in the cause of running-related injuries. In contrast, Thijs et al, using plantar pressure measurements, examined gait-related risk factors for patellofemoral pain in a group of 84 officer cadets over the course of a 6-week basic military training period. Thirty-six cadets developed patellofemoral pain and were therefore compared to the remaining 48. Compared with the control group, the injured group exhibited a supinated heel strike position and reduced pronation (greater lateral contact pressure). Thus, the only 2 prospective studies conducted to date provide conflicting results: one suggests that excessive foot pronation mechanics are related to injury development, whereas the other suggests that reduced foot pronation mechanics are the culprit. Based on these data and the contradictory results derived from the various retrospective cross-sectional studies outlined previously, no definitive answer can be put forth regarding potential running-related injury mechanisms and excessive foot pronation.


The range of physiological foot pronation has not been established. Several investigators have based selection of participants on relatively arbitrary criteria. Mündermann et alclassified 20 runners as overpronators on the basis of a 2- dimensional standing rearfoot-shank angle greater than 13° (see Figure 1). This value was based on work by Clarke et al, who averaged the maximum pronation angle from 9 studies conducted between 1978 and 1983. The average angle when running was 9.4° (± 3.5°), with a maximum pronation of 13° or greater labeled excessive.


Figure 1: Right, markings to bisect the long axis of the shank and rearfoot; left, goniometric measurement of standing rearfoot-shank angle (left foot shown).
McClay and Manal investigated lower extremity mechanics for a group of 20 recreational runners exhibiting normal rearfoot mechanics. Participants for this study were selected using a dynamic assessment of 2-dimensional peak rearfoot-shank angle between 8° and 15° while running on a treadmill. Cheung and Ng identified 22 overpronators on the basis of a dynamic 3-dimensional rearfoot angle greater than 6° while running. Genova and Gross classified 8 overpronators on the basis of a standing rearfoot-shank angle greater than 10°. Cornwall and McPoil reported a measure of 6.3° (± 4.0°) for static rearfoot-shank angle from 82 participants. Sobel et al reported a similar measure of 6.07° (± 2.71°) for 88 adults, whereas Kendall et al reported an average angle of 6.10° (± 2.58°) in 221 runners. Based on these large samples, a static rearfoot-shank angle of 6.00° (± 3.00°) could be considered normal and thus an appropriate measure for screening.
The ability to dynamically stabilize the lower extremity during running may play a role in the cause of running-related injuries. For example, the gluteus medius muscle eccentrically controls hip adduction during the stance phase of gait, and the posterolateral fibers assist in eccentric control of hip internal rotation. The deep external rotators of the hip (piriformis, quadratus femoris, etc) play a critical role in hip stabilization and primarily function to eccentrically control internal rotation of the hip during the stance phase of gait. Ireland et al investigated the hypothesis of reduced hip muscle strength as a contributor to injuries and reported that, when compared to matched controls, female PFPS patients demonstrated 26% less hip abductor and 36% less hip external rotator strength. In addition, runners with ITBS exhibited significantly weaker hip abductor muscle strength in the affected limb, when compared to the unaffected limb and to healthy controls. Ten patients with PFPS exhibited 27% less hip abduction and 30% less hip external rotation strength on the injured limb, when compared to the contralateral limbs and to controls. Injured runners also demonstrated significantly weaker hip abductor and hip flexor muscles, as compared to the noninjured limb and to the control group. Cichanowski et al reported significantly reduced hip abductor and external rotator muscle strength for a group of 13 PFPS patients, compared to the noninjured limbs and to controls. Finally, Kendall et al investigated the influence of proximal and distal clinical measures between 60 runners with PFPS and 52 who served as noninjured controls. As such, 90% of the patients in the PFPS group exhibited significantly reduced hip external rotator, abductor, and flexor strength. These studies suggest a relationship among hip muscle weakness, side-to-side strength imbalances, and running-related overuse injuries. Unfortunately, the relationship between hip mechanics and running-related injuries is not well understood. Noehren et al examined differences in hip mechanics between runners who had sustained ITBS and those who had no knee-related running injuries. Compared to the control group, the ITBS group exhibited a significantly greater peak hip adduction angle and significantly greater frontal plane knee joint moments. Weakness of the hip abductor muscles may result in greater hip adduction, which may necessitate greater passive restraint from the iliotibial band and so result in the greater frontal plane knee joint moments while running. In support of Noehren et al, Ferber et al retrospectively evaluated 35 runners with a history of ITBS, who demonstrated significantly greater peak knee internal rotation angle and peak hip adduction angle when compared to 35 controls. Several studies link common clinical variables, such as muscle strength, anatomical alignment, and the development of running-related injuries. Ferber et al compared differences in kinematic and kinetic patterns of the hip and knee in 20 male and female recreational runners. Compared to men, women exhibited significantly greater peak hip adduction angle and hip frontal plane negative work, which may be the result of a greater pelvis width–femoral length ratio in women. Female runners also demonstrated a significantly greater peak knee abduction angle and were in a more abducted knee position throughout stance. Malinzak et al showed that female runners exhibit a significantly greater knee abduction angle throughout the stance phase of running, greater peak hip adduction, and hip internal rotation angle. The combination of greater hip adduction and knee abduction may be related to greater genu valgum and increased Q angle in women. Fredericson et al reported on the importance of hip abductor strengthening for participants experiencing ITBS. After participating in a 6-week intervention, 22 of 24 runners experienced a significant decrease in pain and a 35% to 51% increase in hip abductor strength. At a 6-month follow-up, there were no reports of ITBS recurrence. Ferber and Kendall evaluated 284 consecutive patients with various musculoskeletal running injuries. Patients were asked to report the average amount of pain they were experiencing while running, using a 10-cm visual analogue scale. A rehabilitation program was prescribed to improve hip abductor, flexor, and external rotator muscle strength. After 4 to 6 weeks of rehabilitation, 165 patients (58%) returned for follow-up assessment, among whom 89% reported at least a 50% improvement in pain. These results suggest that a hip strengthening rehabilitation program can be effective. The current treatment of PFPS is usually not effective, and research has revealed that patients remain at risk for recurring bouts of pain. Nimon et al reported that 25% of PFPS patients continued to have significant knee pain over a 20-year period. Features were not identified that predicted which patients would not improve. Stathopulu and Baildam found that 91% of PFPS patients continued to exhibit varying intensity of daily symptoms, 45% experienced pain at 4- and 18-year follow-up, and 36% stated that the pain restricted their physical activities. A study of 250 PFPS patients, who were surveyed an average 5.7 years after initial treatment, showed that 73% still experienced knee pain, 35% saw no change in symptoms, and 13% experienced increased pain.


Various epidemiological studies have estimated that up to 70% of runners sustain an overuse running injury each year. The knee is the most common site, accounting for approximately 50% of all running injuries. Risk factors can be categorized into 2 groups: atypical foot pronation and inadequate hip muscle stabilization.

Para ler a versão original desse artigo, clique aqui.